• 当前位置:
  • 首页
  • >
  • PDF资料
  • >
  • QGE7520MC-SL8EE PDF文件及第229页内容在线浏览

QGE7520MC-SL8EE

QGE7520MC-SL8EE首页预览图
型号: QGE7520MC-SL8EE
PDF文件:
  • QGE7520MC-SL8EE PDF文件
  • QGE7520MC-SL8EE PDF在线浏览
功能描述: Intel® E7520 Memory Controller Hub (MCH)
PDF文件大小: 2594.09 Kbytes
PDF页数: 共282页
制造商: INTEL[Intel Corporation]
制造商LOGO: INTEL[Intel Corporation] LOGO
制造商网址: http://www.intel.com
捡单宝QGE7520MC-SL8EE
PDF页面索引
[1] 页[2] 页[3] 页[4] 页[5] 页[6] 页[7] 页[8] 页[9] 页[10] 页[11] 页[12] 页[13] 页[14] 页[15] 页[16] 页[17] 页[18] 页[19] 页[20] 页[21] 页[22] 页[23] 页[24] 页[25] 页[26] 页[27] 页[28] 页[29] 页[30] 页[31] 页[32] 页[33] 页[34] 页[35] 页[36] 页[37] 页[38] 页[39] 页[40] 页[41] 页[42] 页[43] 页[44] 页[45] 页[46] 页[47] 页[48] 页[49] 页[50] 页[51] 页[52] 页[53] 页[54] 页[55] 页[56] 页[57] 页[58] 页[59] 页[60] 页[61] 页[62] 页[63] 页[64] 页[65] 页[66] 页[67] 页[68] 页[69] 页[70] 页[71] 页[72] 页[73] 页[74] 页[75] 页[76] 页[77] 页[78] 页[79] 页[80] 页[81] 页[82] 页[83] 页[84] 页[85] 页[86] 页[87] 页[88] 页[89] 页[90] 页[91] 页[92] 页[93] 页[94] 页[95] 页[96] 页[97] 页[98] 页[99] 页[100] 页[101] 页[102] 页[103] 页[104] 页[105] 页[106] 页[107] 页[108] 页[109] 页[110] 页[111] 页[112] 页[113] 页[114] 页[115] 页[116] 页[117] 页[118] 页[119] 页[120] 页[121] 页[122] 页[123] 页[124] 页[125] 页[126] 页[127] 页[128] 页[129] 页[130] 页[131] 页[132] 页[133] 页[134] 页[135] 页[136] 页[137] 页[138] 页[139] 页[140] 页[141] 页[142] 页[143] 页[144] 页[145] 页[146] 页[147] 页[148] 页[149] 页[150] 页[151] 页[152] 页[153] 页[154] 页[155] 页[156] 页[157] 页[158] 页[159] 页[160] 页[161] 页[162] 页[163] 页[164] 页[165] 页[166] 页[167] 页[168] 页[169] 页[170] 页[171] 页[172] 页[173] 页[174] 页[175] 页[176] 页[177] 页[178] 页[179] 页[180] 页[181] 页[182] 页[183] 页[184] 页[185] 页[186] 页[187] 页[188] 页[189] 页[190] 页[191] 页[192] 页[193] 页[194] 页[195] 页[196] 页[197] 页[198] 页[199] 页[200] 页[201] 页[202] 页[203] 页[204] 页[205] 页[206] 页[207] 页[208] 页[209] 页[210] 页[211] 页[212] 页[213] 页[214] 页[215] 页[216] 页[217] 页[218] 页[219] 页[220] 页[221] 页[222] 页[223] 页[224] 页[225] 页[226] 页[227] 页[228] 页[229] 页[230] 页[231] 页[232] 页[233] 页[234] 页[235] 页[236] 页[237] 页[238] 页[239] 页[240] 页[241] 页[242] 页[243] 页[244] 页[245] 页[246] 页[247] 页[248] 页[249] 页[250] 页[251] 页[252] 页[253] 页[254] 页[255] 页[256] 页[257] 页[258] 页[259] 页[260] 页[261] 页[262] 页[263] 页[264] 页[265] 页[266] 页[267] 页[268] 页[269] 页[270] 页[271] 页[272] 页[273] 页[274] 页[275] 页[276] 页[277] 页[278] 页[279] 页[280] 页[281] 页[282] 页
120%
Intel
®
E7520 Memory Controller Hub (MCH) Datasheet 229
Functional Description
5.4.6.2 Thermal Management Threshold Calculation
The dissipation on a given DIMM is a combination of endemic dissipation when powered-on, and
dissipation due to access activity (refresh, activates, and read/write commands). The thermal
management threshold is a measure of the amount of activity supported over a fixed period of time
in addition to the “idle” dissipation for that DIMM. To calculate that budget, assumptions must be
made about the maximum allowable case temperature, the inlet air temperature, and the effective
“theta-CA” coefficient for the DRAM devices in the target chassis. (The theta-CA value denotes
degrees at the case per Watt of dissipated power – better cooling yields a lower coefficient, and a
higher budget for activity.)
The idle dissipation for a given DIMM depends upon the number and type of DRAM devices it
carries; i.e: technology, x8 vs. x4 devices, single vs. dual rank, operating frequency, and device
density. The total current drawn by the device can be calculated from DRAM datasheets. Typical
numbers were used to generate the values used in these calculations.
The activity-based dissipation is the total of activates and commands issued over the monitored
period, weighted for their relative power consumption. For most devices, activates burn more
power than read and write commands, and the relative dissipation changes with device density. As
a result, the MCH supports a programmable weight factor for activates vs. commands (DTCL
register, bits 29:28).
The threshold is just a measure of the number of “active” clocks per monitor period supported by
the power budget after idle dissipation is taken into account. The weighting factor for activates vs.
commands allows us to create a fixedactive_current” for each non-idle clock, which in turn
reduces the threshold value to the weighted number of active clocks allowed during the thermal
management monitoring period. The equation to calculate the threshold value then looks like this:
Threshold = (current_allowed – idle_current) • (clocks_per_period) / active_current
The current_allowed parameter is set by max case temperature (85°C), less the inlet temperature
(Ti), divided by the product of theta-CA and the operating voltage. ((85 – Ti)/(theta-CA • 2.5) for
DDR). As an example, if the inlet temperature (at the DIMM, not at the chassis grille) is 40°C, and
the effective theta-CA is 5°/W, the resulting current_allowed per DIMM is 3.6A before case
temperature hits max.
Figure 5-10. Memory Thermal Management Operation
TT = z*GDSW
AC = Activity Count (running total of weighted operations executed)
TT = Thermal Management Time; z*GDSW
GDSW = Global DRAM Sampling Window; y*4ms
GAT = Global Activity Threshold (initiate management if AC > GAT in any GDSW)
TMW = Thermal Managing Monitoring Window; n*16 clks (recommend n*16 = 10 µsec)
TAM = Thermal Managing Activity Max (enforce that AC < TAM in every TMW)
. . .
GDSW GDSWGDSW GDSW GDSW
Increasing time
AC<GAT AC>GAT
TMW TMW TMW
. . .
GDSW
Thermally Managed:
AC < TAM for each TMW
Not Managed
N
ot Managed
TMW = 10 µsec
购买、咨询产品请填写询价信息:(3分钟左右您将得到回复)
询价型号*数量*批号封装品牌其它要求
删除
删除
删除
删除
删除
增加行数
  •  公司名:
  • *联系人:
  • *邮箱:
  • *电话:
  •  QQ:
  •  微信:

  • 关注官方微信

  • 联系我们
  • 电话:13714778017
  • 周一至周六:9:00-:18:00
  • 在线客服:

天天IC网由深圳市四方好讯科技有限公司独家运营

天天IC网 ( www.ttic.cc ) 版权所有©2014-2023 粤ICP备15059004号

因腾讯功能限制,可能无法唤起QQ临时会话,(点此复制QQ,添加好友),建议您使用TT在线询价。

继续唤起QQ 打开TT询价