• 当前位置:
  • 首页
  • >
  • PDF资料
  • >
  • LT1576 PDF文件及第18页内容在线浏览

LT1576

LT1576首页预览图
型号: LT1576
PDF文件:
  • LT1576 PDF文件
  • LT1576 PDF在线浏览
功能描述: 1.5A, 200kHz Step-Down Switching Regulator
PDF文件大小: 290.41 Kbytes
PDF页数: 共28页
制造商: LINER[Linear Technology]
制造商LOGO: LINER[Linear Technology] LOGO
制造商网址: http://www.linear.com
捡单宝LT1576
PDF页面索引
120%
18
LT1576/LT1576-5
APPLICATIONS INFORMATION
WUU
U
guarantee power sharing. The actual value of the capacitor
in microfarads is not particularly important because at
200kHz, any value above 15µF is essentially resistive.
RMS ripple current rating is the critical parameter. Actual
RMS current can be calculated from:
IIVVVV
RIPPLE RMS OUT OUT IN OUT IN
()
=−
()
/
2
The term inside the radical has a maximum value of 0.5
when input voltage is twice output, and stays near 0.5 for
a relatively wide range of input voltages. It is common
practice therefore to simply use the worst-case value and
assume that RMS ripple current is one half of load current.
At maximum output current of 1.5A for the LT1576, the
input bypass capacitor should be rated at 0.75A ripple
current. Note however, that there are many secondary
considerations in choosing the final ripple current rating.
These include ambient temperature, average versus peak
load current, equipment operating schedule, and required
product lifetime. For more details, see Application Notes
19 and 46, and Design Note 95.
Input Capacitor Type
Some caution must be used when selecting the type of
capacitor used at the input to regulators. Aluminum
electrolytics are lowest cost, but are physically large to
achieve adequate ripple current rating, and size con-
straints (especially height), may preclude their use.
Ceramic capacitors are now available in larger values, and
their high ripple current and voltage rating make them
ideal for input bypassing. Cost is fairly high and footprint
may also be somewhat large. Solid tantalum capacitors
would be a good choice, except that they have a history of
occasional spectacular failures when they are subjected to
large current surges during power-up. The capacitors can
short and then burn with a brilliant white light and lots of
nasty smoke. This phenomenon occurs in only a small
percentage of units, but it has led some OEM companies
to forbid their use in high surge applications. The input
bypass capacitor of regulators can see these high surges
when a battery or high capacitance source is connected.
Several manufacturers have developed a line of solid
tantalum capacitors specially tested for surge capability
(AVX TPS series for instance, see Table 3), but even these
units may fail if the input voltage surge approaches the
maximum voltage rating of the capacitor. AVX recom-
mends derating capacitor voltage by 2:1 for high surge
applications. The highest voltage rating is 50V, so 25V
may be a practical upper limit when using solid tantalum
capacitors for input bypassing.
Larger capacitors may be necessary when the input volt-
age is very close to the minimum specified on the data
sheet. Small voltage dips during switch on time are not
normally a problem, but at very low input voltage they may
cause erratic operation because the input voltage drops
below the minimum specification. Problems can also
occur if the input-to-output voltage differential is near
minimum. The amplitude of these dips is normally a
function of capacitor ESR and ESL because the capacitive
reactance is small compared to these terms. ESR tends to
be the dominate term and is inversely related to physical
capacitor size within a given capacitor type.
SYNCHRONIZING (Available as -SYNC Option)
The LT1576-SYNC has the SHDN pin replaced with a
SYNC pin, which is used to synchronize the internal
oscillator to an external signal. The SYNC input must pass
from a logic level low, through the maximum synchroni-
zation threshold with a duty cycle between 10% and 90%.
The input can be driven directly from a logic level output.
The synchronizing range is equal to
initial
operating fre-
quency up to 400kHz. This means that
minimum
practical
sync frequency is equal to the worst-case
high
self-
oscillating frequency (250kHz), not the typical operating
frequency of 200kHz. Caution should be used when syn-
chronizing above 280kHz because at higher sync frequen-
cies the amplitude of the internal slope compensation
used to prevent subharmonic switching is reduced. This
type of subharmonic switching only occurs at input volt-
ages less than twice output voltage. Higher inductor
values will tend to eliminate this problem. See Frequency
Compensation section for a discussion of an entirely
different cause of subharmonic switching before assum-
ing that the cause is insufficient slope compensation.
Application Note 19 has more details on the theory of slope
compensation.
购买、咨询产品请填写询价信息:(3分钟左右您将得到回复)
询价型号*数量*批号封装品牌其它要求
删除
删除
删除
删除
删除
增加行数
  •  公司名:
  • *联系人:
  • *邮箱:
  • *电话:
  •  QQ:
  •  微信:

  • 关注官方微信

  • 联系我们
  • 电话:13714778017
  • 周一至周六:9:00-:18:00
  • 在线客服:

天天IC网由深圳市四方好讯科技有限公司独家运营

天天IC网 ( www.ttic.cc ) 版权所有©2014-2023 粤ICP备15059004号

因腾讯功能限制,可能无法唤起QQ临时会话,(点此复制QQ,添加好友),建议您使用TT在线询价。

继续唤起QQ 打开TT询价