• 当前位置:
  • 首页
  • >
  • PDF资料
  • >
  • LM3S610-IQN50 PDF文件及第56页内容在线浏览

LM3S610-IQN50

LM3S610-IQN50首页预览图
型号: LM3S610-IQN50
PDF文件:
  • LM3S610-IQN50 PDF文件
  • LM3S610-IQN50 PDF在线浏览
功能描述: Microcontroller
PDF文件大小: 2341.71 Kbytes
PDF页数: 共396页
制造商: ETC2[List of Unclassifed Manufacturers]
制造商LOGO: ETC2[List of Unclassifed Manufacturers] LOGO
制造商网址:
捡单宝LM3S610-IQN50
PDF页面索引
[1] 页[2] 页[3] 页[4] 页[5] 页[6] 页[7] 页[8] 页[9] 页[10] 页[11] 页[12] 页[13] 页[14] 页[15] 页[16] 页[17] 页[18] 页[19] 页[20] 页[21] 页[22] 页[23] 页[24] 页[25] 页[26] 页[27] 页[28] 页[29] 页[30] 页[31] 页[32] 页[33] 页[34] 页[35] 页[36] 页[37] 页[38] 页[39] 页[40] 页[41] 页[42] 页[43] 页[44] 页[45] 页[46] 页[47] 页[48] 页[49] 页[50] 页[51] 页[52] 页[53] 页[54] 页[55] 页[56] 页[57] 页[58] 页[59] 页[60] 页[61] 页[62] 页[63] 页[64] 页[65] 页[66] 页[67] 页[68] 页[69] 页[70] 页[71] 页[72] 页[73] 页[74] 页[75] 页[76] 页[77] 页[78] 页[79] 页[80] 页[81] 页[82] 页[83] 页[84] 页[85] 页[86] 页[87] 页[88] 页[89] 页[90] 页[91] 页[92] 页[93] 页[94] 页[95] 页[96] 页[97] 页[98] 页[99] 页[100] 页[101] 页[102] 页[103] 页[104] 页[105] 页[106] 页[107] 页[108] 页[109] 页[110] 页[111] 页[112] 页[113] 页[114] 页[115] 页[116] 页[117] 页[118] 页[119] 页[120] 页[121] 页[122] 页[123] 页[124] 页[125] 页[126] 页[127] 页[128] 页[129] 页[130] 页[131] 页[132] 页[133] 页[134] 页[135] 页[136] 页[137] 页[138] 页[139] 页[140] 页[141] 页[142] 页[143] 页[144] 页[145] 页[146] 页[147] 页[148] 页[149] 页[150] 页[151] 页[152] 页[153] 页[154] 页[155] 页[156] 页[157] 页[158] 页[159] 页[160] 页[161] 页[162] 页[163] 页[164] 页[165] 页[166] 页[167] 页[168] 页[169] 页[170] 页[171] 页[172] 页[173] 页[174] 页[175] 页[176] 页[177] 页[178] 页[179] 页[180] 页[181] 页[182] 页[183] 页[184] 页[185] 页[186] 页[187] 页[188] 页[189] 页[190] 页[191] 页[192] 页[193] 页[194] 页[195] 页[196] 页[197] 页[198] 页[199] 页[200] 页[201] 页[202] 页[203] 页[204] 页[205] 页[206] 页[207] 页[208] 页[209] 页[210] 页[211] 页[212] 页[213] 页[214] 页[215] 页[216] 页[217] 页[218] 页[219] 页[220] 页[221] 页[222] 页[223] 页[224] 页[225] 页[226] 页[227] 页[228] 页[229] 页[230] 页[231] 页[232] 页[233] 页[234] 页[235] 页[236] 页[237] 页[238] 页[239] 页[240] 页[241] 页[242] 页[243] 页[244] 页[245] 页[246] 页[247] 页[248] 页[249] 页[250] 页[251] 页[252] 页[253] 页[254] 页[255] 页[256] 页[257] 页[258] 页[259] 页[260] 页[261] 页[262] 页[263] 页[264] 页[265] 页[266] 页[267] 页[268] 页[269] 页[270] 页[271] 页[272] 页[273] 页[274] 页[275] 页[276] 页[277] 页[278] 页[279] 页[280] 页[281] 页[282] 页[283] 页[284] 页[285] 页[286] 页[287] 页[288] 页[289] 页[290] 页[291] 页[292] 页[293] 页[294] 页[295] 页[296] 页[297] 页[298] 页[299] 页[300] 页[301] 页[302] 页[303] 页[304] 页[305] 页[306] 页[307] 页[308] 页[309] 页[310] 页[311] 页[312] 页[313] 页[314] 页[315] 页[316] 页[317] 页[318] 页[319] 页[320] 页[321] 页[322] 页[323] 页[324] 页[325] 页[326] 页[327] 页[328] 页[329] 页[330] 页[331] 页[332] 页[333] 页[334] 页[335] 页[336] 页[337] 页[338] 页[339] 页[340] 页[341] 页[342] 页[343] 页[344] 页[345] 页[346] 页[347] 页[348] 页[349] 页[350] 页[351] 页[352] 页[353] 页[354] 页[355] 页[356] 页[357] 页[358] 页[359] 页[360] 页[361] 页[362] 页[363] 页[364] 页[365] 页[366] 页[367] 页[368] 页[369] 页[370] 页[371] 页[372] 页[373] 页[374] 页[375] 页[376] 页[377] 页[378] 页[379] 页[380] 页[381] 页[382] 页[383] 页[384] 页[385] 页[386] 页[387] 页[388] 页[389] 页[390] 页[391] 页[392] 页[393] 页[394] 页[395] 页[396] 页
120%
System Control
56 October 8, 2006
Preliminary
two changes above. It is the user's responsibility to have a stable clock source (like the main
oscillator) before the RCC register is switched to use the PLL.
6.1.4.5 Clock Verification Timers
There are three identical clock verification circuits that can be enabled though software. The circuit
checks the faster clock by a slower clock using timers:
The main oscillator checks the PLL.
The main oscillator checks the internal oscillator.
The internal oscillator divided by 64 checks the main oscillator.
If the verification timer function is enabled and a failure is detected, the main clock tree is
immediately switched to a working clock and an interrupt is generated to the controller. Software
can then determine the course of action to take. The actual failure indication and clock switching
does not clear without a write to the CLKVCLR register, an external reset, or a POR reset. The
clock verification timers are controlled by the PLLVER, IOSCVER, and MOSCVER bits in the RCC
registe r (see page 79).
6.1.5 System Control
For power-savings purposes, the RCGCn, SCGCn, and DCGCn registe rs c o ntro l th e cl oc k g ati ng
logic for each peripheral or block in the system while the controller is in Run, Sleep, and
Deep-Sle ep mode, respec tively. The DC1, DC2 and DC4 registers act as a write mask for the
RCGCn, SCGCn, and DCGCn regist ers.
In Run mode, the controller is actively executing code. In Sleep mode, the clocking of the device is
unchanged but the controller no longer executes code (and is no longer clocked). In Deep-Sleep
mode, the clocking of the device may change (depending on the Run mode clock configuration)
and the controller no longer executes code (and is no longer clocked). An interrupt returns the
device to Run mode from one of the sleep modes; the sleep modes are entered on request from
the code. Each mode is described in more detail in this section.
6.1.5.1 Run Mode
Run mode provides normal operation of the processor and all of the peripherals that are currently
enabled by the RCGC n registers. The system clock can be any of the available clock sources
includi ng the PLL .
6.1.5.2 Sleep Mode
In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked.
Peripherals are clocked that are enabled in the SCGCn register when Auto Clock Gating is
enabled (see RCC register on page 79) or the RCGCn register when the Auto Clock Gating is
disabled. The System Clock has the same source and frequency as that during Run mode.
6.1.5.3 Deep-Sleep Mode
The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are
clocked that are enabled in the DCGCn register when Auto Clock Gating is enabled (see RCC
register) or the RCGCn register when the Auto Clock Gating is disabled. The system clock source
is the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if
one is enabled (see page 90). When the DSLPCLKCFG register is used, the internal oscillator is
powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the
time of the WFI instruction, hardware powers the PLL down and overrides the SYSDIV field of the
active RCC register to be /16 or /64 respectively. When the Deep-Sleep exit event occurs,
hardware brings the system clock back to the source and frequency it had at the onset of
Deep-Sleep mode before enabling the clocks that were stopped during the Deep-Sleep duration.
购买、咨询产品请填写询价信息:(3分钟左右您将得到回复)
询价型号*数量*批号封装品牌其它要求
删除
删除
删除
删除
删除
增加行数
  •  公司名:
  • *联系人:
  • *邮箱:
  • *电话:
  •  QQ:
  •  微信:

  • 关注官方微信

  • 联系我们
  • 电话:13714778017
  • 周一至周六:9:00-:18:00
  • 在线客服:

天天IC网由深圳市四方好讯科技有限公司独家运营

天天IC网 ( www.ttic.cc ) 版权所有©2014-2023 粤ICP备15059004号

因腾讯功能限制,可能无法唤起QQ临时会话,(点此复制QQ,添加好友),建议您使用TT在线询价。

继续唤起QQ 打开TT询价