• 当前位置:
  • 首页
  • >
  • PDF资料
  • >
  • AD1934 PDF文件及第14页内容在线浏览

AD1934

AD1934首页预览图
型号: AD1934
PDF文件:
  • AD1934 PDF文件
  • AD1934 PDF在线浏览
功能描述: 8-Channel DAC with PLL, 192 kHz, 24 Bits
PDF文件大小: 527.6 Kbytes
PDF页数: 共28页
制造商: AD[Analog Devices]
制造商LOGO: AD[Analog Devices] LOGO
制造商网址: http://www.analog.com
捡单宝AD1934
PDF页面索引
120%
AD1934
Rev. 0 | Page 14 of 28
POWER SUPPLY AND VOLTAGE REFERENCE
The AD1934 is designed for 3.3 V supplies. Separate power
supply pins are provided for the analog and digital sections.
These pins should be bypassed with 100 nF ceramic chip
capacitors, as close to the pins as possible, to minimize noise
pickup. A bulk aluminum electrolytic capacitor of at least 22 μF
should also be provided on the same PC board as the codec. For
critical applications, improved performance is obtained with
separate supplies for the analog and digital sections. If this is
not possible, it is recommended that the analog and digital
supplies be isolated by means of a ferrite bead in series with
each supply. It is important that the analog supply be as
clean as possible.
All digital inputs are compatible with TTL and CMOS levels.
All outputs are driven from the 3.3 V DVDD supply and are
compatible with TTL and 3.3 V CMOS levels.
The DAC internal voltage reference (VREF) is brought out on
FILTR and should be bypassed as close as possible to the chip,
with a parallel combination of 10 μF and 100 nF. Any external
current drawn should be limited to less than 50 μA.
The internal reference can be disabled in PLL and Clock
Control 1 Register and FILTR can be driven from an external
source. This can be used to scale the DAC output to the clipping
level of a power amplifier based on its power supply voltage.
The CM pin is the internal common-mode reference. It should
be bypassed as close as possible to the chip, with a parallel
combination of 47 μF and 100 nF. This voltage can be used to
bias external op amps to the common-mode voltage of the input
and output signal pins. The output current should be limited to
less than 0.5 mA source and 2 mA sink.
SERIAL DATA PORTS—DATA FORMAT
The eight DAC channels use a common serial bit clock (DBCLK)
and a common left-right framing clock (DLRCLK) in the serial
data port. The clock signals are all synchronous with the sample
rate. The normal stereo serial modes are shown in
Figure 15.
The DAC serial data modes default to I
2
S. The ports can also be
programmed for left-justified, right-justified, and TDM modes.
The word width is 24 bits by default and can be programmed
for 16 or 20 bits. The DAC serial formats are programmable
according to DAC Control 0 Register. The polarity of the
DBCLK and DLRCLK is programmable according to DAC
Control 1 Register. The auxiliary TDM port is also provided for
applications requiring more than eight DAC channels. In this
mode, the AUXTDMLRCLK and AUXTDMBCLK pins are
configured as TDM port clocks. In regular TDM mode, the
DLRCLK and DBCLK pins are used as the TDM port clocks.
The auxiliary TDM serial port’s format and its serial clock
polarity is programmable according to the Auxiliary TDM Port
Control 0 Register and Control 1 Register. Both DAC and
auxiliary TDM serial ports are programmable to become the
bus masters according to DAC Control 1 Register and auxiliary
TDM Control 1 Register. By default, both auxiliary TDM and
DAC serial ports are in the slave mode.
TIME-DIVISION MULTIPLEXED (TDM) MODES
The AD1934 serial ports also have several different TDM serial
data modes. The most commonly used configuration is shown
in
Figure 10. In Figure 10, the eight on-chip DAC data slots are
packed into one TDM stream. In this mode, DBCLK is 256 f
S
.
The I/O pins of the serial ports are defined according to the
serial mode selected. For a detailed description of the function
of each pin in TDM and AUX Modes, see
Table 12.
The AD1934 allows systems with more than eight DAC channels
to be easily configured by the use of an auxiliary serial data port.
The DAC TDM-AUX mode is shown in
Figure 11. In this mode,
the AUX channels are the last four slots of the 16-channel TDM
data stream. These slots are extracted and output to the AUX
serial port. One major difference between the TDM mode and
an auxiliary TDM mode is the assignment of the TDM port
pins, as shown in
Table 12. In auxiliary TDM mode, DBCLK
and DLRCLK are assigned as the auxiliary port clocks, and
AUXTDMBCLK and AUXTDMLRCLK are assigned as the
TDM port clocks. In regular TDM or 16-channel, daisy-chain
TDM mode, the DLRCLK and DBCLK pins are set as the TDM
port clocks. It should be noted that due to the high
AUXTDMBCLK frequency, 16-channel auxiliary TDM mode is
available only in the 48 kHz/44.1 kHz/32 kHz sample rate.
SLOT 1
LEFT 1
SLOT 2
RIGHT 1
SLOT 3
LEFT 2
SLOT 4
RIGHT 2
MSB MSB–1 MSB–2 DATA
BCLK
LRCLK
SLOT 5
LEFT 3
SLOT 6
RIGHT 3
SLOT 7
LEFT 4
SLOT 8
RIGHT 4
LRCLK
BCLK
DATA
256 BCLKs
32 BCLK
06106-017
Figure 10. DAC TDM (8-Channel I
2
S Mode
购买、咨询产品请填写询价信息:(3分钟左右您将得到回复)
询价型号*数量*批号封装品牌其它要求
删除
删除
删除
删除
删除
增加行数
  •  公司名:
  • *联系人:
  • *邮箱:
  • *电话:
  •  QQ:
  •  微信:

  • 关注官方微信

  • 联系我们
  • 电话:13714778017
  • 周一至周六:9:00-:18:00
  • 在线客服:

天天IC网由深圳市四方好讯科技有限公司独家运营

天天IC网 ( www.ttic.cc ) 版权所有©2014-2023 粤ICP备15059004号

因腾讯功能限制,可能无法唤起QQ临时会话,(点此复制QQ,添加好友),建议您使用TT在线询价。

继续唤起QQ 打开TT询价